Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6069, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480775

RESUMO

Arabica coffee is the most popular and best-selling type of coffee. During coffee fermentation, microorganisms are essential for the production of metabolites and volatile compounds that affect coffee flavor quality. This work aimed to study the mutation, selection, and characterization of the Wickerhamomyces anomalus strain YWP1-3 as a starter culture to enhance the flavor quality of Arabica coffee. The results revealed that six mutants could produce relatively high levels of the pectinase enzyme on pectin agar media and exhibited high activity levels, ranging from 332.35 to 415.88 U/ml in mucilage broth. Strains UV22-2, UV22-3, UV41-1 and UV32-1 displayed higher levels of amylase activity than did the wild type. The UV22-2 and UV22-3 mutants exhibited the highest pectin degradation indices of 49.22% and 45.97%, respectively, and displayed significantly enhanced growth rates in nitrogen yeast base media supplemented with various sugars; thus, these mutants were evaluated for their ability to serve as a starter for fermentation of Arabica coffee. The cupping scores of coffees derived from UV22-2 and UV22-3 were 83.5 ± 1.5 and 82.0 ± 2.14, respectively. The volatile compounds in the roasted coffee fermented by UV22-2 were analyzed by GC‒MS, which revealed higher levels of furfuryl alcohol and furfuryl acetate than did the other samples. These findings suggested that UV22-2 could be an influential starter culture for Arabica coffee fermentation.


Assuntos
Coffea , Café , Café/metabolismo , Fermentação , Coffea/metabolismo , Leveduras/genética , Pectinas/metabolismo
2.
3 Biotech ; 12(7): 143, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685951

RESUMO

The purpose of this research was to isolate microorganisms from coffee fermentation processes and screen them for their potential to improve the flavor of Arabica coffee using a new approach that included pectin degradation ability and growth in mucilage broth. All of the studied microorganisms were isolated from 38 different samples of fresh coffee cherries, coffee mucilage and coffee pulp. A total of 262 microbial isolates were obtained and subjected to screening using pectinase screening agar medium for pectinolytic organisms. The results of the pectinase production test showed that 18 yeast isolates were found to produce pectinase that could degrade the pectin present in solid media. The sugar assimilation profiles and growth of selected strains in mucilage broth were studied. Therefore, 18 isolates from the selected yeasts were subjected to molecular identification by the use of 18S rRNA gene sequencing. The diversity of the yeast isolates was studied, and they were identified as Wickerhamomyces anomalus, Naganishia liquefaciens, Pichia kudriavzevii, Kazachstania naganishii and Kazachstania sp. Moreover, isolates SWU3YWP1-3, SWU3YSK9 and INFCY1-4 were used as a seed culture for Arabica coffee fermentation. The cupping sensory scores of the control (without yeast inoculation) and those inoculated with three isolated yeast strains that were determined by Q-Arabica Graders were 73.75, 84.75, 80.25 and 75.00, respectively. Unique flavors and aromas were detected. This is the first report of screening microorganisms from the Arabica coffee fermentation process by the combination of various properties with success in improving the quality of coffee beverage.

3.
Electron. j. biotechnol ; 40: 52-57, July. 2019. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1053462

RESUMO

Background: Plastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor. Results: PLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L) of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray) with a conversion efficiency of 32%, which was 6-fold more than that without dialysis. Conclusions: This is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency.


Assuntos
Poliésteres/metabolismo , Actinomycetales/enzimologia , Enzimas/metabolismo , Polímeros/metabolismo , Biodegradação Ambiental , Ácido Láctico/análise , Reatores Biológicos , Concentração de Íons de Hidrogênio
4.
Electron. j. biotechnol ; 30: 71-76, nov. 2017. graf, ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1021543

RESUMO

Background: Poly(DL-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter. Results: Among the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h. Conclusions: This research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).


Assuntos
Poliésteres/metabolismo , Actinomycetales/enzimologia , Enzimas/biossíntese , Biodegradação Ambiental , Reatores Biológicos , Enzimas/metabolismo , Enzimas Imobilizadas , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...